

Recent Fuel Processor Development at PCI

Subir Roychoudhury

Precision Combustion, Inc. (PCI), North Haven, CT

DOE Phase II SBIR (Joe Stoffa)

10th Annual SECA Workshop Pittsburgh, PA; July 16, 2009

Precision Combustion, Inc.

- Established in 1986; Privately held; 30 employees; Located in North Haven, CT
- Develops advanced catalytic reactors & systems; manufactures limited-volume catalytic products
- Two major platform technologies under development
 - RCL® catalytic combustors for gas turbines and downhole applications
 - Microlith[®] catalytic reactors for multiple markets

Microlith® Technology

Small, durable, catalytically coated metal mesh with very high surface area

Continuous catalyst coating line with batched furnace and rigorous QA, QC in place

Microlith® Catalytic Reactors

Ultra compact
Short contact time
Rapid thermal response
High heat & mass transfer
High surface area/unit volume
Low catalyst usage & small size ⇒ Low cost

PCI holds multiple patents on catalyst structure, reaction methods, and apparatus

Reforming Areas Under Development At PCI

Reforming Processes:

Auto-thermal reforming Catalytic Partial Oxidation Steam Reforming

Reforming reactors:

WGSR, PROX
Burners (startup, AGB, purge)
Scales: 50 We – 250 kWe –

Fuels:

Liquids: Diesel, JP-8, Jet-A, E-85 FT fuels, Methanol, Gasoline Gases: Natural Gas, Propane

BOP:

Pumps, Blowers, Nozzles
Igniters, HX, Steam generation,
F/A/S mixing, Controls
Sulfur Cleanup, System Integration

- Microlith[®] Auto Thermal Reformer
 - Operation w. SOFC stack
 - Sulfur Tolerance
 - Operation on AGR
- Microlith® Steam Reformer
- Reformer Scale-up

System Design Approach (E.g. Water Recycle)

Standalone Fuel Processor (SOFC)

5 – 10 kW_{th} reformer integrated w. fuel/air/steam injector, igniter, steam generating HX, sulfur trap

Standalone Fuel Processor (HT-PEM/PEM)

25 kW_{th} ATR w. fuel/air/steam injector, igniter, steam generating HX, sulfur trap, WGSR

Standalone Fuel Processor Metrics

- Reforming efficiency: ~85% (ratio of LHV)
- Size: 3 liters; Weight: 5 kg (for 5 kW_{th})
- Operate at low S:C ratios (AGR/water)
- Start up in CPOX (1 min), transition to ATR (7 min)
- Modular, readily-serviceable components
- Stand-alone pumps & blowers implemented
- I2 V battery for startup & controls
- Readily integrated w. SOFC, PEM, H₂ generation systems
- Durability: 1000 hrs w/o failure w. JP-8 (~400 ppm_w sulfur)

Convert JP-8*/Diesel+ into sulfur free (<1 ppm_v) reformate

- Microlith[®] Auto Thermal Reformer
 - Operation w. SOFC stack
 - Sulfur Tolerance
 - Operation on AGR
- Microlith® Steam Reformer
- Reformer Scale-up

Stack Interface (SOFC)

Towards Integrated System (ATR + BOP)

Fuel Processor Controls

- Automated start, shutdown, load changes
- Closed loop feedback control w. safety interlocks
- Real-time air/fuel/water flow control
- Control logic/algorithm implemented via PC-based interface
- National Instruments interface hardware, programmed in Labview

Reformer Performance (1100 hrs)

JP-8 w. low S (Average ~15 ppm_w S) Operated with I kW_e SOFC stack – Stable Operation w/o coking for I 100 hours

Higher Hydrocarbon Formation with ~15 ppm_w S

Propylene and propane <10 ppm_v for up to 1100 hrs; Ethylene and ethane were not detected by GC (<5 ppm_v)

Results From Stack Interface Testing

- 6 thermal cycles
- I 100 kW-hr produced
- DC Gross efficiency of 34% achieved
- Maximum power of 1.5 kWe obtained
- Successful startup/operation/shutdown demonstrated
- I 100 hrs total testing- 370 hrs longest steady-state period
- Successfully tested manual load-following (order of seconds)
- On post inspection, no carbon was found or deleterious effects on stack observed
- No fuel cell performance difference beyond expected compositional changes observed

- Microlith[®] Auto Thermal Reformer
 - Operation w. SOFC stack
 - Sulfur Tolerance
 - Operation on AGR
- Microlith® Steam Reformer
- Reformer Scale-up

ATR Sulfur Tolerance Tests

- Performed 1700 hrs of testing on ATR catalyst w. the following fuels:
 - 4 ppm_w naturally occurring JP-8 (Baseline)
 - 50, 100, 250, 500, 1000, 2000 and 3000 ppm_w Sulfur JP-8 (doped with DBT)
 - 400 ppm_w Sulfur JP-8 (naturally occurring/21% aromatics, DBT-doped, and BT-doped)
- Evaluated ATR catalyst performance for:
 - Fuel conversion to CI products (CO, CO₂, and CH₄)
 - Reforming efficiency (ratio of LHV of H₂ and CO in reformate to the feed fuel)
 - Reformate composition for organics (C2 or >) via GC/TCD analysis
 - Reformate composition for H₂S/COS via GC/FPD analysis

Effect of 400 ppm_w "Real S" for 1000 hrs

- Stable/complete fuel conversion, Reforming efficiency, H₂+CO mole % over time
- Total organics (primarily C2, C3) <100ppm at end of test.

- Microlith[®] Auto Thermal Reformer
 - Operation w. SOFC stack
 - Sulfur Tolerance
 - Operation on AGR
- Microlith® Steam Reformer
- Reformer Scale-up

Anode Recycle for Water Neutrality

- Used surrogate gas mixture to simulate AGR composition and flow rate
 - (Assumptions: 60% SOFC FU; 50% AGR split to achieve target O/C and S/C)
- Reactor startup under CPOX (waterless); then transitioned to ATR (w. AGR, S/C = 0.7)
- Stable reactor operation w. no temperature excursions
- Successfully demonstrated feasibility of using AGR for water neutral operation

- Microlith[®] Auto Thermal Reformer
 - Operation w. SOFC stack
 - Sulfur Tolerance
 - Operation on AGR
- Microlith® Steam Reformer
- Reformer Scale-up

Steam Reforming: Performance w.o sulfur

Steam Reforming: w. 25 ppm Sulfur

W. 25 ppm_w S n-C12 (DBT-doped), conversion was stable at 100% & H₂ conc. was steady.

- Microlith[®] Auto Thermal Reformer
 - Operation w. SOFC stack
 - Sulfur Tolerance
 - Operation on AGR
- Microlith® Steam Reformer
- Reformer Scale-up

200 kW_{th} ATR + Sulfur Trap + WGSR – ONR

- Simple layout
- Compact footprint
- ATR Size: 3 liters
- Operating pressure: 7 atm
- Reforming efficiency: 70% 80%
- 1 mkWe scale-up ongoing

Summary

- Demonstrated stand alone ATR integrated w. I kW_e SOFC stack
 - Compact system
 - High reforming efficiency (~85%) with JP-8
 - Stable ATR and stack operation over 1100 hours
- Demonstrated sulfur tolerance of ATR catalyst
 - Catalyst can tolerate 3000 ppm S; Performance degrades w. >500 ppm sulfur
 - However, catalyst performance recovers after operation w. low-sulfur JP-8
 - Stable (high conversion & efficiency) with up to 400 ppm, sulfur in JP-8
 - Tested for 1000 hrs to confirm viability
- Demonstrated sulfur tolerance of steam reforming catalyst
 - <u>25 ppm_w S in n-C12 for 50 hrs</u>. w/o degradation
- Demonstrated AGR capability for water neutrality
- Scale-up to 200 kW_{th} demonstrated; 1mW_{th} ongoing

Acknowledgment

We are grateful to the DOD & DOE for their support,

And

The engineers and technicians at PCI.

